RECYCLED GLASS CONCRETE

Molten Sand Research Center

Anas Almonnieay Khin Kyaw Shahad Aloqaili

PROJECT BACKGROUND

Purpose of project

 To research concrete mix designs for pavement using recycled glass to achieve high strength concrete and to reduce alkali silica reaction (ASR)

Location

Parking Lots and Sidewalks in Flagstaff

PROJECT BACKGROUND

Background Information

- Previous Research
 - Design formula
 - Compressive load test results

Table 1: Glass to cement & sand ratio & Compressive Strength Results [1]

Mix Design	Experiment Detail	7Day Average	28 Days Average	Standard
		(psi)	(psi)	Deviation
				(28 Day)
1	Control (0% Glass)	6608	8557	503
2	10% Glass Powder	5865	8090	530
3	20% Glass Powder	5759	7458	1115
4	30% Glass Powder	5786	7772	603
5	10% Glass Coarse	5621	7401	239
6	20% Glass Coarse	5361	7215	166
7	30% Glass Coarse	5037	6552	256

STAKEHOLDERS

- Client and Technical Advisor
 - Dr. Chun-Hsing (Jun) Ho
- Northern Arizona University (NAU)
- Engineering Community & Society
- Engineering Students
- People who will use parking lots and sidewalks

TECHNICAL CONSIDERATIONS & CHALLENGES

Technical Considerations

- To find an appropriate range of cement/sand and recycled glass ratio
- To reduce emission
- Concrete mixing
- Curing
- Testing
- Obtaining statistically significant data

Challenges:

- Obtaining the required materials
- Time running tests

SCOPE OF SERVICES

- Task 1.0 Research
 - Task 1.1 Previous Projects
 - Task 1.2 Alkali Silica Reaction (ASR)
 - Task 1.3 Glass Size Properties
 - Task 1.4 Material Properties
- Task 2.0 Developing Mix Formulae
- Task 3.0 Experimental Preparation
 - Task 3.1 Material Acquisition
 - Task 3.2 Testing Equipment

SCOPE OF SERVICES CONT.

- Task 4.0 Experimental Procedures
 - Task 4.1 Mixing
 - Task 4.2 Curing
 - Task 4.3 Testing
- Task 5.0 Data Analysis
 - Task 5.1 Compressive Load
 - Task 5.2 Tension Splitting
 - Task 5.3 Temperature Cracking
 - Task 5.4 Statistical Analysis
 - Task 5.4.1 ANOVA
 - Task 5.4.2 T-test

Figure 1: Testing Equipment

SCOPE OF SERVICES CONT.

- Task 6.0 Project Management
 - Task 6.1 Team Management
 - Task 6.2 Client Management
 - Task 6.3 Deliverables
- Exclusions
 - Air void
 - Permeability test

PROJECT SCHEDULE

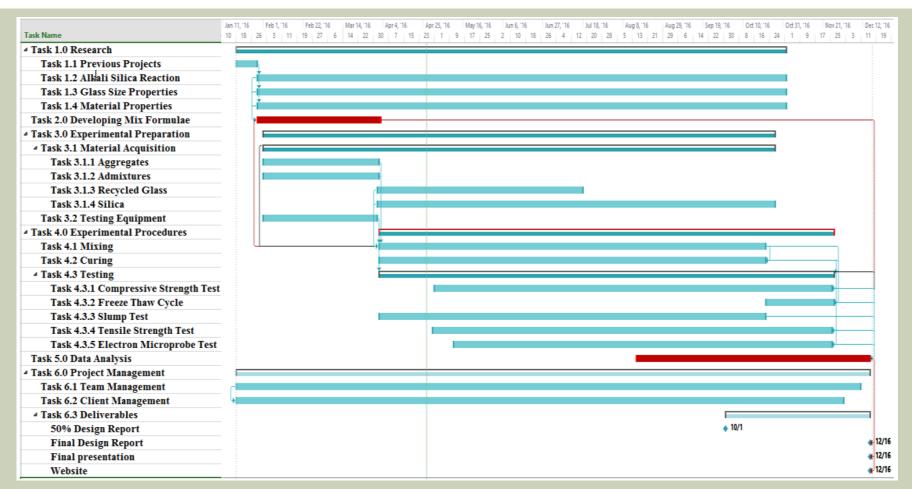


Figure 2: Project Gantt Chart

COST OF ENGINEERING SERVICES

Table 2: Staff Plan

Classifications	Code
Senior Engineer	SENG
Engineer	ENG
Lab Technician	LAB
Engineering Intern	INT
Administrative Assistant	AA

COST OF ENGINEERING SERVICES CONT.

Table 3: Total Hours for Staff

	Staffing and Cos	t				
Major Task	Task	Hours				
55	1	SENG	ENG	LAB	INT	AA
1.0 Literature	1.1 Previous Projects	4	10	0	12	0
	1.2 Alkali Silica Reaction (ASR)	4	20	0	8	0
Review	1.3 Glass Particle Size	3	15	0	6	0
	1.4 Material Properties	25	1	0	20	0
2.0 Developing Mix Formulae		3	40	0	22	0
3.0 Experimental Preparation	3.1 Material Acquisition	0	47	7	30	20
	3.2 Testing Equipment	0	3	15	0	0
4.0 Experimental Procedure &	4.1 Mixing	0	5	50	10	0
	4.2 Curing	0	0	1	0	0
Data Analysis	4.3 Testing	0	15	47	20	0
	5.1 Team Management	6	20	0	0	0
	5.2 Client Management	0	10	0	0	16
5.0 Project	5.3 50% Design Report	1	20	0	12	0
Management	5.4 Final Design Report	2	20	0	12	0
	5.5 Final Presentation	3	3	0	0	0
	5.6 Website	0	0	0	0	10
	Hours per worker	51	229	120	152	46
	Total Hours 598					

5/7/2016

COST OF ENGINEERING SERVICES CONT.

Table 4: Total Cost Estimate

1.0 Personnel	Classification	Hours	Rate, \$/hr	Cost
	SENG	51	195	\$9,945
	ENG	229	67	\$15,350
	LAB	120	48	\$5,760
	INT	152	22	\$3,344
	AA	46	56	\$2,576
	Total personnel			\$36,975
2.0 Travel	2 Trips*7.4miles/ Trip	\$0.40/mi		\$12
3.0 Lab Rental		120	30	\$3,600
4.0 TOTAL				\$40,437

REFERENCES

[1] Brumit, T, W, Ibrahim, A. and Wang, Crushed Glass as a Sustainable Alternative Aggregate For Concrete. Rep. Vol. Phase one. Flagstaff: Northern Arizona U, 2015.

Questions?